A machine learning approach in Python is used to forecast the number of train passengers using a fuzzy time series model

Saturday, February 24, 2024

Solikhin Solikhin, Septia Lutfi, Purnomo Purnomo, Hardiwinoto Hardiwinoto

Abstract


Train passenger forecasting assists in planning, resource use, and system management. forecasts rail ridership. Train passenger predictions help prevent stranded passengers and empty seats. Simulating rail transport requires a low-error model. We developed a fuzzy time series forecasting model. Using historical data was the goal. This concept predicts future railway passengers using Holt's double exponential smoothing (DES) and a fuzzy time series technique based on a rate-of-change algorithm. Holt's DES predicts the next period using a fuzzy time series and the rate of change. This method improves prediction accuracy by using event discretization. positive, since changing dynamics reveal trends and seasonality. It uses event discretization and machine-learning-optimized frequency partitioning. The suggested method is compared to existing train passenger forecasting methods. This study has a low average forecasting error and a mean squared error.

Keywords


Frequency-based partitioning; Machine learning; Prediction; Rate of change; Transportation public

Full Text:

PDF



DOI: https://doi.org/10.11591/eei.v11i5.3518

Prediction of passenger train using fuzzy time series and percentage change methods

Solikhin Solikhin, Septia Lutfi, Purnomo Purnomo, Hardiwinoto Hardiwinoto

Abstract


In the subject of railway operation, predicting railway passenger volume has always been a hot topic. Accurately forecasting railway passenger volume is the foundation for railway transportation companies to optimize transit efficiency and revenue. The goal of this research is to use a combination of the fuzzy time series approach based on the rate of change algorithm and the Holt double exponential smoothing method to forecast the number of train passengers. In contrast to prior investigations, we focus primarily on determining the next time period in this research. The fuzzy time series is employed as the forecasting basis, the rate of change is used to build the set of universes, and the Holt's double exponential smoothing method is utilized to forecast the following period in this case study. The number of railway passengers predicted for January 2020 is 38199, with a tiny average forecasting error rate of 0.89 percent and a mean square error of 131325. It can also help rail firms identify future passenger needs, which can be used to decide whether to expand train cars or run new trains, as well as how to distribute tickets.

Keywords


Double exponential smoothing; Forecasting; Fuzzy time series; Passenger train; Percentage change

Full Text:

PDF



DOI: https://doi.org/10.11591/eei.v10i6.2822

Membangun Sistem Smart Trash Menggunakan Mikrokontroler Motor Servo Panjerino

Yuda Hirmawan1, Eko Riyanto2, Solikhin Solikhin3*

Abstract

To cultivate good behavior and care for the environment, SD Negeri 2 KuwasenJepara promotes proper waste disposal, but in reality, there are still many students who don't do it. The purpose of this research is to build a smart trash can to socialize waste disposal in an attractive way for students. We use a manual trash can that is integrated with the Arduino Uno. This smart trash system is able to open automatically when it detects movement within <50 cm and vice versa, and can emit a "Thank you for not littering" sound. The performance test results show that the ultrasonic sensor device opens and closes within 3.07 seconds at a distance of 15 centimeters and 3.06 seconds at a distance of 30 centimeters. The feasibility test of the tool obtained a score of ≥76% and an ease of use score of 87.7%.

Full Text:

PDF

References


S. Sukarjadi, A. Arifiyanto, D. T. Setiawan, & M. Hatta, “Perancangan dan Pembuatan Smart Trash Bin di Universitas Maarif Hasyim Latif,” Teknika: Engineering and Sains Journal, 1(2), (2017),101-110.

A. Ardiyanto, A. Ariman, A., & E. Supriyadi, “Alat Pengukur Suhu Berbasis Arduino Menggunakan Sensor Inframerah Dan Alarm Pendeteksi Suhu Tubuh Diatas Normal,” SINUSOIDA, 23(1), (2021),11-21.

A. N. Trisetiyanto, “Rancang Bangun Alat Penyemprot Disenfektan Otomatis untuk Mencegah Penyebaran Virus Corona,” Journal of Informatics Education, 3(1), (2020), 45-51.

A. Hilal, & S. Manan, “Pemanfaatan Motor Servo Sebagai Penggerak Cctv Untuk Melihat Alat-Alat Monitor Dan Kondisi Pasien Di Ruang Icu”. Gema Teknologi, 17(2), (2015).

Wikipedia, “Pengeras Suara”. [Internet]. Available: https://id.wikipedia.org/wiki/Pengeras_suara

IAVT.2014. IAVT 2014.Liege Belgium. Montefiore Institut

Teknik Elektronika, “Pengertian Speaker dan Prinsip kerjanya”. [Internet]. Available: https://teknikelektronika.com/fungsi-pengertian-speaker-prinsip-kerja-speaker/

S. Beta, & S. Astuti, “Modul Timbangan Benda Digital Dilengkapi Led Rgb Dan Dfplayer Mini,” Orbith: Majalah Ilmiah Pengembangan Rekayasa dan Sosial, 15(1), (2019), 10-15.

Y. Mochtiarsa, “Rancangan kendali lampu menggunakan mikrokontroller ATMega328 berbasis sensor getar,” Jurnal Informatika SIMANTIK, 1(1), (2016), 40-44.

Teknik Komputer Universitas Pendidikan Indonesia, “Bahasa C dan C++”, (2021). [Internet]. Available: https://tekkom.upi.edu/2021/04/bahasa-c-dan-c/

I. Budiman, S. Saori, R. N. Anwar, F. Fitriani, & M. Y. Pangestu, “Analisis Pengendalian Mutu Di Bidang Industri Makanan (Studi Kasus: Umkm Mochi Kaswari Lampion Kota Sukabumi),” Jurnal Inovasi Penelitian, 1(10), (2021), 2185-2190.

Priya Pedamkar, “Prototype Model”, [Internet]. Available: https://www.educba.com/prototype-model/




DOI: https://doi.org/10.26877/jiu.v9i1.15444

JSON and MySQL Databases for Spatial Visualization of Polygon and Multipolygon Data in Geographic Information Systems: A Comparative Study

M. Zakki Abdillah1*, Devi Astri Nawangnugraeni2, Solikhin Solikhin3, Toni Wijanarko Adi Putra4


 Abstract

Purpose: Spatial data is used to display digital maps. Geographic information systems' access performance depends on spatial data formats. This study compared JSON and MySQL database data display speeds. Open-source RDBMSs work with various programming languages. JSON displays data in text format. The purpose of this study is to select spatial data for polygon and multipolygon Geographic Information Systems (GIS).

Design of study: access speed to the GIS determined the method. This study evaluated how effectively JSON and MySQL displayed digital maps in GIS using two types of geographical data. JSON was in the server directory, and MySQL was on the database server. To measure performance, these two spatial data sets were compared using the same server parameters. Testers employed various tools, operating systems, devices, and browsers.

Result: JSON data is stored on a live server and is easier to access while having more data. This test compares file size and speed on three online devices. This test generates JSON as the fastest geographic data, with an average access time of 3.9 seconds and 8.5 MB loaded. MySQL, which averages 9.7 seconds, loads 6.3 MB of files. Despite its larger file size, JSON is faster for spatial data, according to tests.

Originality: Its comparison of JSON and MySQL databases based on its application for geographical data display in GIS is unique. This test offers geographic data in JSON faster than MYSQL. JSON can be used to choose location data that GIS can readily access.


References

A. A. Nurdin, G. N. Salmi, K. Sentosa, A. R. Wijayanti, and A. Prasetya, “Utilization of Business Intelligence in Sales Information Systems,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, pp. 39–48, 2022, doi: 10.52465/joiser.v1i1.101.

R. Naufalia, C. Lateefa, and D. Yassar, “Usefulness factors to predict the continuance intention using mobile payment, case study: GO-Pay, OVO, Dana,” J. Soft Comput. Explor., vol. 2, no. 2, 2021, doi: 10.52465/joscex.v2i2.50.

W. A. Teniwut, C. L. Hasyim, and F. Pentury, “Towards smart government for sustainable fisheries and marine development: An intelligent web-based support system approach in small islands,” Mar. Policy, vol. 143, no. May, p. 105158, 2022, doi: 10.1016/j.marpol.2022.105158.

M. Kulawiak, A. Dawidowicz, and M. E. Pacholczyk, “Analysis of server-side and client-side WebGIS data processing methods on the example of JTS and JSTS using open data from OSM and geoportal,” Comput. Geosci., vol. 129, no. April, pp. 26–37, 2019, doi: 10.1016/j.cageo.2019.04.011.

J. Shi, Z. Pan, L. Jiang, and X. Zhai, “An ontology-based methodology to establish city information model of digital twin city by merging BIM, GIS and IoT,” Adv. Eng. Informatics, vol. 57, no. November 2022, p. 102114, 2023, doi: 10.1016/j.aei.2023.102114.

S. Sularno, R. Astri, P. Anggraini, D. Prima Mulya, and D. Mulya, “Geographical Information System of Bus and Travel Counter in Padang City Using BFS Method Based on Mobile Web,” Sci. J. Informatics, vol. 8, no. 2, pp. 304–313, 2021, doi: 10.15294/sji.v8i2.33117.

J. L. Amaro-Mellado, L. Melgar-García, C. Rubio-Escudero, and D. Gutiérrez-Avilés, “Generating a seismogenic source zone model for the Pyrenees: A GIS-assisted triclustering approach,” Comput. Geosci., vol. 150, no. February, p. 104736, 2021, doi: 10.1016/j.cageo.2021.104736.

M. Z. Abdillah, D. A. Nawangnugraeni, and A. H. P. Yuniarto, “Geographic Information System (GIS) For Maping Greenpark Using Leaflet JS,” J. Tek. Inform. Kaputama, vol. 5, no. 2, pp. 259–266, 2021.

S. Singh and S. N. Behera, Advances in Waste Management, no. January. Springer Singapore, 2019. doi: 10.1007/978-981-13-0215-2.

P. Du and H. Hu, “Optimization of tourism route planning algorithm for forest wetland based on GIS,” J. Discret. Math. Sci. Cryptogr., vol. 21, no. 2, pp. 283–288, 2018, doi: 10.1080/09720529.2018.1449300.

S. W. Mulvenon, K. Wang, S. McKenzie, and T. Anderson, “Spatially Referenced Educational Achievement Data Exploration: A Web-Based Interactive System Integration of GIS, PHP, and MySQL Technologies,” J. Educ. Technol. Syst., vol. 34, no. 3, pp. 243–256, Mar. 2006, doi: 10.2190/2VUC-CCJN-LHB3-EU7J.

J. Jumadi and S. Widiadi, “Pengembangan Aplikasi Sistem Informasi Geografis (SIG) berbasis Web untuk Manajemen Pemanfaatan Air Tanah menggunakan PHP, Java dan MySQL Spatial (Studi Kasus di Kabupaten Banyumas),” Forum Geogr., vol. 23, no. 2, p. 1236, Dec. 2009, doi: 10.23917/forgeo.v23i2.5006.

S. Q. Khairunisa et al., “Characterization of spatial and temporal transmission of HIV infection in Surabaya, Indonesia: Geographic information system (GIS) cluster detection analysis (2016–2020),” Heliyon, vol. 9, no. 9, p. e19528, 2023, doi: 10.1016/j.heliyon.2023.e19528.

C. Quiros, P. K. Thornton, M. Herrero, A. Notenbaert, and E. Gonzalez-Estrada, “GOBLET: An open-source geographic overlaying database and query module for spatial targeting in agricultural systems,” Comput. Electron. Agric., vol. 68, no. 1, pp. 114–128, Aug. 2009, doi: 10.1016/j.compag.2009.05.001.

G. Zodiatis, E. Zhuk, V. Krylenko, and M. Krylenko, “Dolgaya spit dynamics visualization by using Black Sea GIS regional module,” in Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Aug. 2018, p. 61. doi: 10.1117/12.2326496.

A. Azzam, G. Samy, M. A. Hagras, and R. ElKholy, “Geographic information systems-based framework for water–energy–food nexus assessments,” Ain Shams Eng. J., p. 102224, Mar. 2023, doi: 10.1016/j.asej.2023.102224.

F. Medjani, T. Derradji, F. Zahi, M. Djidel, S. Labar, and L. Bouchagoura, “Assessment of soil erosion by Universal Soil Loss Equation model based on Geographic Information System data: a case study of the Mafragh watershed, north-eastern Algeria,” Sci. African, vol. 21, p. e01782, Sep. 2023, doi: 10.1016/j.sciaf.2023.e01782.

J. Penny, D. Khadka, P. B. R. Alves, A. S. Chen, and S. Djordjević, “Using multi criteria decision analysis in a geographical information system framework to assess drought risk,” Water Res. X, vol. 20, p. 100190, Sep. 2023, doi: 10.1016/j.wroa.2023.100190.

L. Vankova, Z. Krejza, G. Kocourkova, and J. Laciga, “Geographic Information System Usage Options in Facility Management,” Procedia Comput. Sci., vol. 196, pp. 708–716, 2022, doi: 10.1016/j.procs.2021.12.067.

S. W. Chan, S. K. Abid, N. Sulaiman, U. Nazir, and K. Azam, “A systematic review of the floodvulnerability using geographic information system,” Heliyon, vol. 8, no. 3, p. e09075, Mar. 2022, doi: 10.1016/j.heliyon.2022.e09075.

F. J. Fliegner and D. Möst, “High-resolution scenario building support for offshore grid development studies in a geographical information system,” Energy Strateg. Rev., vol. 48, p. 101110, Jul. 2023, doi: 10.1016/j.esr.2023.101110.

G. Villacreses, J. Martínez-Gómez, D. Jijón, and M. Cordovez, “Geolocation of photovoltaic farms using Geographic Information Systems (GIS) with Multiple-criteria decision-making (MCDM) methods: Case of the Ecuadorian energy regulation,” Energy Reports, vol. 8, pp. 3526–3548, Nov. 2022, doi: 10.1016/j.egyr.2022.02.152.

J. Zhang, X. Zhang, A. Rentizelas, C. Dong, and J. Li, “Optimisation of Logistic Model Using Geographic Information Systems: A Case Study of Biomass-based Combined Heat & Power Generation in China,” Appl. Energy Combust. Sci., vol. 10, p. 100060, Jun. 2022, doi: 10.1016/j.jaecs.2022.100060.

S. Boroushaki and J. Malczewski, “ParticipatoryGlS: a web-based collaborative GIS and multicriteria decision analysis,” Urisa J., vol. 22, no. 1, p. 23, 2010.

C.-O. Truică, E.-S. Apostol, J. Darmont, and T. B. Pedersen, “The Forgotten Document-Oriented Database Management Systems: An Overview and Benchmark of Native XML DODBMSes in Comparison with JSON DODBMSes,” Big Data Res., vol. 25, p. 100205, Jul. 2021, doi: 10.1016/j.bdr.2021.100205.

M.-A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, and S. Scherzinger, “Negation-closure for JSON Schema,” Theor. Comput. Sci., vol. 955, p. 113823, Apr. 2023, doi: 10.1016/j.tcs.2023.113823.

Zhuokui Xu and Jianjun Zhu, “Research of WebGIS based on HTML5 and JSON,” in Proceedings of 2011 International Conference on Computer Science and Network Technology, Dec. 2011, pp. 1714–1717. doi: 10.1109/ICCSNT.2011.6182298.

J. Maso, A. Z. Torres, and P. Baumann, “New Model for Geospatial Coverages in JSON,” 2019, pp. 316–357. doi: 10.4018/978-1-5225-8446-9.ch015.

A. A. Frozza and R. dos S. Mello, “JS4Geo: a canonical JSON Schema for geographic data suitable to NoSQL databases,” Geoinformatica, vol. 24, no. 4, pp. 987–1019, Oct. 2020, doi: 10.1007/s10707-020-00415-w.

P. Bourhis, J. L. Reutter, and D. Vrgoč, “JSON: Data model and query languages,” Inf. Syst., vol. 89, p. 101478, Mar. 2020, doi: 10.1016/j.is.2019.101478.

M. Z. Abdillah, “Implementation of AJAX and JSON to improve web application performance,” J. Transform., vol. 14, no. 1, p. 1, Nov. 2016, doi: 10.26623/transformatika.v14i1.363.

F. da Costa Rainho and J. Bernardino, “Web GIS: A new system to store spatial data using GeoJSON in MongoDB,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp. 1–6. doi: 10.23919/CISTI.2018.8399279.

Gunawan, F. X. Ferdinandus, and E. I. Setiawan, “GeoJSON Web Service based road assets management system for Surabaya city using mobile GPS,” in 2016 International Computer Science and Engineering Conference (ICSEC), Dec. 2016, pp. 1–5. doi: 10.1109/ICSEC.2016.7859915.

Z. Zhu and J. Tan, “A Multi-Source Heterogeneous Vector Space Data Integration Scheme Based on GeoJSON,” in 2018 26th International Conference on Geoinformatics, Jun. 2018, pp. 1–4. doi: 10.1109/GEOINFORMATICS.2018.8557141.

Y. K. Gupta, R. D. Gupta, and K. Kumar, “WebGIS for Planning Infrastructural Facilities at Village Level,” in 13th Annual International Conference and Exhibition on Geospatial Information Technology and Applications, 2010, pp. 19–21.

Y. P. Singh, A. K. Singh, and R. P. Singh, “Web GIS based Framework for Citizen Reporting on Collection of Solid Waste and Mapping in GIS for Allahabad City,” SAMRIDDHI A J. Phys. Sci. Eng. Technol., vol. 8, no. 01, pp. 01–05, Jun. 2016, doi: 10.18090/samriddhi.v8i1.11405.

A. T. Kulkarni, J. Mohanty, T. I. Eldho, E. P. Rao, and B. K. Mohan, “A web GIS based integrated flood assessment modeling tool for coastal urban watersheds,” Comput. Geosci., vol. 64, pp. 7–14, Mar. 2014, doi: 10.1016/j.cageo.2013.11.002.

I. K. G. Sudiartha, I. N. E. Indrayana, I. W. Suasnawa, S. A. Asri, and P. W. Sunu, “Data Structure Comparison Between MySql Relational Database and Firebase Database NoSql on Mobile Based Tourist Tracking Application,” J. Phys. Conf. Ser., vol. 1569, p. 032092, Jul. 2020, doi: 10.1088/1742-6596/1569/3/032092.

M. Ohyver, J. V. Moniaga, I. Sungkawa, B. E. Subagyo, and I. A. Chandra, “The Comparison Firebase Realtime Database and MySQL Database Performance using Wilcoxon Signed-Rank Test,” Procedia Comput. Sci., vol. 157, pp. 396–405, 2019, doi: 10.1016/j.procs.2019.08.231.

E. Zhuk, A. Khaliulin, G. Zodiatis, A. Nikolaidis, and E. Isaeva, “Black Sea GIS developed in MHI,” in Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Aug. 2016, p. 96881C. doi: 10.1117/12.2241631.

Aplikasi untuk Mencari Kelayakan Siswa Penerima Bantuan Pendidikan dengan Metode Simple Additive Weighting (Studi Kasus : SMK NU Ma'arif Kudus)

Syaifuddin Syaifuddin1, Solikhin Solikhin2*, Eko Riyanto3

 

ABSTRAK

Setiap periode SMK NU Ma’arif 2 Kudus melaksanakan program penyaluran bantuan kepada peserta didiknya yang kurang mampu. Dalam memberikan bantuan tersebut perlu dilakukan seleksi bagi para calon penerima. Permasalahan yang dihadapi panitia adalah seleksi dilakukan dengan menunjukpara peserta didik secara langsung dan acak sehingga mengalami kesulitan dalam menentukan siapa yang sebenarnya berhak menerima bantuan. Untuk mengatasi masalah tersebut dan mendapatkan calon yang berhak menerima serta mencapai standar yang diinginkan, maka diperlukan Sistem Seleksi Calon Penerima Bantuan Siswa Miskin (BSM) menggunakan Metode Simple Additive Weighting (SAW) sebagai pendukung keputusan.Metode SAW mencari penjumlahan terbobot berdasar pada kriteria penilaian yang telah ditentukan. Kriteria yang digunakan dalam sistem ini yaitu;jumlah penghasilan orang tua, nilai rata-rata rapor, jumlah kerabat/ saudara. Dari hasil pengujian sistem ini diperoleh luaran berupa perankingan nilai akhir mulai dari yang terbesar hingga terkecil. Hasil analisa perbandingan sistem ini dengan sistem lama terkait tingkat keakuratannya adalah 18 dari 30 siswa (60%) pada sistem lama, sedangkan sistem baru adalah 30 dari 30 siswa (100%). Hasil kuesioner terkait uji kelayakan sistem Seleksi Calon Penerima BSM menggunakan Metode SAWini sangat mudah digunakan (Perceived Ease Of Use) dengan nilai akhir 86,3%, dan sangat bermanfaat (Perceived Of Usefulness) dengan nilai akhir 88,3%.Penerapan sistem ini berkontribusi bagi SMK NU Ma’arif 2 Kudus dalam melaksanakan program penyaluran dana BSM secara optimal, transparan, tepat sasaran, dan berkeadilan serta dapat dijadikan sebagai pendukung keputusan bagi pemangku kepentingan.


Abstract

Every period SMK NU Ma’arif 2 Kudus carries out educational aid distribution programs to students who are less fortunate. In providing this assistance, it is necessary to select prospective recipients. The problem faced by the committee is that the selection is carried out by directly and randomly appointing students so that they have difficulty determining who is actually entitled to receive assistance. To overcome this problem and get candidates who are entitled to receive and achieve the desired standards, it is necessary to apply the eligibility selection of students receiving educational assistance using the Simple Additive Weighting (SAW) method as decision support. The SAW method seeks a weighted addition based on predetermined assessment criteria. The criteria used in this system are; the amount of parents' income, the average value of report cards, the number of relatives / relatives. From the test results of this system, the output is in the form of a ranking of the final values ranging from largest to smallest. The results of the comparative analysis of this system with the old system regarding the level of accuracy are 18 out of 30 students (60%) in the old system, while the new system is 30 out of 30 students (100%). The results of the questionnaire related to the feasibility test of the application for selection of students receiving educational assistance using the SAW Method are very easy to use (Perceived Ease Of Use) with a final value of 86.3%, and very useful (Perceived Of Usefulness) with a final value of 88.3%. The contribution to SMK NU Ma’arif 2 Kudus in this study was the making of an application to find out the eligibility of student beneficiaries using the SAW method. This can assist the committee in implementing the education aid fund distribution program in an optimal, transparent, on target and equitable manner and can be used as decision support for stakeholders.

DOI : https://doi.org/10.25126/jtiik.2021864023

Full text : PDF

REFERENSI

BERLILANA, PRAYOGA, F.D., UTOMO, F.S., 2018. Implementasi Simple Additive Weighting dan Weighted Product pada Sistem Pendukung Keputusan untuk Rekomendasi Penerima Beras Sejahtera. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 5(4), p.419-426.

DULCIC, Z., PAVLIC, D., and SILIC, I., 2012. Evaluating the Intended Use of Decision Support System (DSS) by Applying Technology Acceptance Model (TAM) in Business Organizations in Croatia. Procedia-Social and Behavioral Sciences, 58, p.1565-1575.

ESPOSITO, S., CAFIERO, A., GIANNINO, F., MAZZOLENI, S., & DIANO, M.M., 2017. A Monitoring, Modeling and Decision Support System (DSS) for a Microalgae Production Plant based on Internet of Things Structure. Procedia Computer Science, 113, p.519-524.

FISHBURN, P.C., 1967, Additive Utilities with Incomplete Product Set: Application to Priorities and Assignments, Operations Research Society of America (ORSA), Baltimore, MD, U.S.A.

GUO, Y., WANG, N., XU, Z.Y., & WU, K., 2020. The internet of things-based decision support system for information processing in intelligent manufacturing using data mining technology. Mechanical Systems and Signal Processing, 142, p.106630.

HARDITA, V.C., UTAMI, E., & LUTHFI, E.T., 2019. Penerapan Simple Additive Weighting pada Pemilihan Canvasser Terbaik PT. Eratel Prima. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 6(5), p.567-576.

KALISZEWSKI, I., & PODKOPAEV, D., 2016. Simple additive weighting-A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, p.155-161.

MACCRIMMON, K.R., 1968, Decision Making among Multiple Atribut Alternatives: a Survey and Consolidated Approach California: The RAND Corporation.

MANNINA, G., REBOUCAS, T.F., COSENZA, A., MARRĖ, M.S., & GIBERT, K., 2019. Decision support systems (DSS) for wastewater treatment plants-A review of the state of the art. Bioresource Technology, (290), p.121814.

SETYANI, R.E. & SAPUTRA, R., 2016. Flood-prone Areas Mapping at Semarang City By Using Simple Additive Weighting Method. Procedia - Social and Behavioral Sciences, (227), p.378-386.

Undang-Undang Republik Indonesia Nomor 20 Tahun 2003 Tentang Sistem Pendidikan Nasional.

Retrived from

http://luk.staff.ugm.ac.id/atur/UU20-2003Sisdiknas.pdf.

Model Hybrid untuk Prediksi Jumlah Penduduk yang Hidup dalam Kemiskinan

Toni Wijanarko Adi Putra1*, Solikhin Solikhin2, M Zakki Abdillah3


Abstrak

Kemiskinan merupakan permasalahan global yang saling berkaitan dengan permasalahan sosial lainnya. Sebagian besar negara berkembang di dunia pasti mengalami hal tersebut dan berusaha mencari solusi untuk mengentaskan kemiskinan, seperti yang terjadi di provinsi Jawa Tengah, Indonesia. Kemiskinan di Jawa Tengah mengalami fluktuasi selama lima tahun terakhir. Secara spesifik, menurut data Badan Pusat Statistik, jumlah penduduk miskin pada tahun 2018, 2019, 2020, 2021, dan 2022 sebanyak 3.897,20 ribu, 3.743,23 ribu, 3.980,90 ribu, 4.109,75 ribu, dan 3.831,44 ribu jiwa. Tinjauan terhadap naik turunnya kemiskinan pada tahun-tahun mendatang sangatlah penting. Untuk memerangi kemiskinan secara efektif, tidak hanya memahami penyebab kemiskinan tetapi memprediksi kemiskinan juga sangatlah penting. Penelitian ini bertujuan untuk memprediksi garis kemiskinan, jumlah penduduk miskin, dan persentase penduduk miskin di Jawa Tengah. Penelitian ini mengusulkan model peramalan hybrid untuk memperkirakan perubahan kemiskinan di Jawa Tengah. Di sini kami mengintegrasikan teknik statistik Holt-Winter triple exponential smoothing ke dalam fuzzy time series dengan pendekatan algoritma rate of change. Hasil uji kesalahan prediksi dengan metode Mean Absolute Percentage Error sangat kecil yaitu: garis kemiskinan sebesar 0,003%, jumlah penduduk miskin sebesar 0,005%, dan persentase penduduk miskin sebesar 0,004%. Temuan penelitian ini diyakini akan membantu pembuat kebijakan dalam mengembangkan strategi efektif untuk memerangi kemiskinan. Pengetahuan ini dapat menjadi dasar pengambilan keputusan alokasi sumber daya bagi pemerintah daerah dan pusat serta pembuat kebijakan.

 Abstract

Poverty is a global problem that is interconnected with other social problems. Most developing countries in the world certainly experience this and are trying to find solutions to alleviate poverty, as is the case in the province of Central Java, Indonesia. Poverty in Central Java has fluctuated over the last five years. Specifically, according to data from the Central Statistics Agency, the number of poor people in 2018, 2019, 2020, 2021, and 2022 is 3,897.20 thousand, 3,743.23 thousand, 3,980.90 thousand, 4,109.75 thousand, and 3,831.44 thousand people. A review of the rise and fall of poverty in the coming years is very important. To fight poverty effectively, not only understanding the causes of poverty but also predicting poverty is essential. The aim of this research is to predict the poverty line, number of poor people, and percentage of poor people in Central Java. This research proposes a hybrid forecasting model to estimate changes in poverty in Central Java. Here we integrate Holt-Winter's triple exponential smoothing statistical technique into fuzzy time series with a rate of change algorithm approach. The prediction error test results using the Mean Absolute Percentage Error method are very small, namely: the poverty line is 0.003%, the number of poor people is 0.005%, and the percentage of poor people is 0.004%. It is believed that the findings of this research will assist policymakers in developing effective strategies to combat poverty. This knowledge can be the basis for resource allocation decisions for local and central governments and policymakers.

DOI : https://doi.org/10.25126/jtiik.1067484

Full text : PDF

Referensi

ABDUL HAKIM, S. E., 2018. Analisis Kemiskinan di Jawa Tengah.

Bappeda Jateng. Sekilas SDGs [online] Tersedia di: https://sdgs.bappenas.go.id/sekilas-sdgs/#:~:text=TPB%2FSDGs%20merupakan%20komitmen%20global,Bersih%20dan%20Terjangkau%3B%20(8) [Diakses 10 Juli 2023].

BPS Jateng, 2022. Kemiskinan [online] Tersedia di : https://jateng.bps.go.id/indicator/23/34/7/kemiskinan.html [Diakses 23 Maret 2023].

CARVALHO, T., VELLASCO, M., & AMARAL, J. F., 2023. Automatic generation of fuzzy inference systems for multivariate time series forecasting. Fuzzy Sets and Systems, 470, 108657. doi: 10.1016/j.fss.2023.108657.

CHANG, P. C., WANG, Y. W., & LIN, C. H., 2007. The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86-96. doi: 10.1016/j.eswa.2005.11.021.

CHEN, S. M., & CHEN, S. W., 2014. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. IEEE Transactions on Cybernetics, 45(3), 391-403. doi: 10.1109/TCYB.2014.2326888.

CHEN, S. M., & PHUONG, B. D. H., 2017. Fuzzy time series forecasting based on optimal partitions of intervals and optimal weighting vectors. Knowledge-Based Systems, 118, 204-216. doi: 10.1016/j.knosys.2016.11.019.

CHENG, S. H., CHEN, S. M., & JIAN, W. S., 2015, October. A novel fuzzy time series forecasting method based on fuzzy logical relationships and similarity measures. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 2250-2254). IEEE. doi: 10.1109/SMC.2015.393.

CHENG, S. H., CHEN, S. M., & JIAN, W. S., 2016. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Information Sciences, 327, 272-287. doi: 10.1016/j.ins.2015.08.024.

CHRISTYAWAN, T. Y., SYAUQI HARIS, M., RODY, R., & MAHMUDY, W., 2018. Optimization of Fuzzy Time Series Interval Length Using Modified Genetic Algorithm for Forecasting. International Conference on Sustainable Information Engineering and Technology (SIET), pp. 60-65, doi: 10.1109/SIET.2018.8693219.

COSTA, M. A., RUIZ-CÁRDENAS, R., MINETI, L. B., & PRATES, M. O., 2021. Dynamic time scan forecasting for multi-step wind speed prediction. Renewable Energy, 177, 584-595. doi: 10.1016/j.renene.2021.05.160.

del CAMPO, R. G., GARMENDIA, L., RECASENS, J., & MONTERO, J., 2017, July. Hesitant fuzzy sets and relations using lists. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE. doi: 10.1109/FUZZ-IEEE.2017.8015516.

FIRMANSYAH, A., HASIBUANG, H. F., & KHAIRUNNISA, D., 2023. Addressing the Ideal Implementation of Regional Expenditure to Alleviate Poverty: A Case Study of Kebumen Regency. IPSAR (International Public Sector Accounting Review), 1(1). doi: 10.31092/ipsar.v1i1.2130.

GAJAMANNAGE, K., PARK, Y., & JAYATHILAKE, D. I., 2023. Real-time forecasting of time series in financial markets using sequentially trained dual-LSTMs. Expert Systems with Applications, 223, 119879. doi: 10.1016/j.eswa.2023.119879.

GARG, B., BEG, M. S., & ANSARI, A. Q., 2012, August. A new computational fuzzy time series model to forecast number of outpatient visits. In 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS) (pp. 1-6). IEEE. doi: 10.1109/NAFIPS.2012.6290977.

HARMADJI, D. E., SOLIKHIN, S., YUDATAMA, U., & PURWANTO, A., 2023. Prediksi Produksi Biofarmaka Menggunakan Model Fuzzy Time Series dengan Pendekatan Percentage Change dan Frequency Based Partition. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(1), 173-184. doi: 10.25126/jtiik.20231016267.

HARTOMO, K. D., YULIANTO, S., & VALENTINA, A., 2020. A New Model of Poverty Index Prediction Using Triple Exponential Smoothing Method. In 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (pp. 76-79). IEEE. doi: 10.1109/ICITACEE50144.2020.9239205.

HOLT, C. C., 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International journal of forecasting, 20(1), 5-10. doi: 10.1016/j.ijforecast.2003.09.015.

JAISWAL, R., JHA, G. K., KUMAR, R. R., & CHOUDHARY, K., 2022. Deep long short-term memory based model for agricultural price forecasting. Neural Computing and Applications, 34(6), 4661-4676. doi.org/10.1007/s00521-021-06621-3.

JANA, P., 2016. Aplikasi triple exponential smoothing untuk forecasting jumlah penduduk miskin. Jurnal Derivat: Jurnal Matematika dan Pendidikan Matematika, 3(2), 76-82. doi: 10.31316/j.derivat.v3i2.719.

JIANG, J., WU, L., ZHAO, H., ZHU, H., & ZHANG, W., 2023. Forecasting movements of stock time series based on hidden state guided deep learning approach. Information Processing & Management, 60(3). doi: 103328. 10.1016/j.ipm.2023.103328.

JIANG, J. A., SYUE, C. H., WANG, C. H., LIAO, M. S., SHIEH, J. S., & WANG, J. C., 2022. Precisely forecasting population dynamics of agricultural pests based on an interval type-2 fuzzy logic system: Case study for oriental fruit flies and the tobacco cutworms. Precision Agriculture, 23(4), 1302-1332. doi: 10.1007/s11119-022-09886-3.

JIANG, P., YANG, H., LI, R., & LI, C., 2020. Inbound tourism demand forecasting framework based on fuzzy time series and advanced optimization algorithm. Applied Soft Computing, 92, 106320. doi: 10.1016/j.asoc.2020.106320.

JILANI, T. A., BURNEY, S. M. A., & ARDIL, C., 2007. Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning. International Journal of Computational Intelligence, 4(1), 112-117. doi: 10.5281/zenodo.1077541.

KUSHWAH, A. K., & WADHVANI, R., 2022. Trend triplet-based data clustering for eliminating nonlinear trend components of wind time series to improve the performance of statistical forecasting models. Multimedia Tools and Applications, 81(23), 33927-33953. doi: 10.1007/s11042-022-12992-z.

LEWIS, C. D., 1982. Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. (No Title).

MAKATJANE, K., & MOROKE, N., 2016. Comparative study of holt-winters triple exponential smoothing and seasonal Arima: forecasting short term seasonal car sales in South Africa. Makatjane KD, Moroke ND. doi: 10.22495/rgcv6i1art8.

MAKRIDAKIS, S., WHEELWRIGHT, S. C., & HYNDMAN, R. J., 2008. Forecasting methods and applications. John wiley & sons. doi: hdl.handle.net/11728/6581.

MIRCETIC, D., ROSTAMI-TABAR, B., NIKOLICIC, S., & MASLARIC, M., 2022. Forecasting hierarchical time series in supply chains: an empirical investigation. International Journal of Production Research, 60(8), 2514-2533. doi: 10.1080/00207543.2021.1896817.

RUBIO, A., BERMỦDEZ, J. D., & VERCHER, E., 2017. Improving stock index forecasts by using a new weighted fuzzy-trend time series method. Expert Systems with Applications, 76, 12-20. doi: 10.1016/j.eswa.2017.01.049.

SARI, D. A., 2016. Analisis faktor-faktor yang mempengaruhi kesejahteraan masyarakat di Kota Bandarlampung.

SINGH, P., 2017. An efficient method for forecasting using fuzzy time series. In Emerging research on applied fuzzy sets and intuitionistic fuzzy matrices (pp. 287-304). IGI Global. doi: 10.4018/978-1-5225-0914-1.

SOFO, F., & WICKS, A., 2017. An occupational perspective of poverty and poverty reduction. Journal of Occupational Science, 24(2), 244-249. doi: 10.1080/14427591.2017.1314223.

SOLIKHIN, S., & YUDATAMA, U., 2019. Fuzzy Time Series dan Algoritme Average Based Length untuk Prediksi Pekerja Migran Indonesia. Jurnal Teknologi Informasi dan Ilmu Komputer, 6(4), 369-376. doi: 10.25126/jtiik.2019641177.

SOLIKHIN, S., LUTFI, S., PURNOMO, P., & HARDIWINOTO, H., 2021. Prediction of passenger train using fuzzy time series and percentage change methods. Bulletin of Electrical Engineering and Informatics, 10(6), 3007-3018. doi:10.11591/eei.v10i6.2822.

SOLIKHIN, S., LUTFI, S., PURNOMO, P., & HARDIWINOTO, H., 2022. A machine learning approach in Python is used to forecast the number of train passengers using a fuzzy time series model. Bulletin of Electrical Engineering and Informatics, 11(5), 2746-2755. doi: 10.11591/eei.v11i5.3518.

SONG, Q., & CHISSOM, B. S., 1993. Forecasting enrollments with fuzzy time series—Part I. Fuzzy sets and systems, 54(1), 1-9. doi: 10.1016/0165-0114(93)90355-L.

SONG, Q., & CHISSOM, B. S., 1994. Forecasting enrollments with fuzzy time series—Part II. Fuzzy sets and systems, 62(1), 1-8. doi: 10.1016/0165-0114(94)90067-1.

STEVENSON, M., & PORTER, J. E., 1972. Fuzzy time series forecasting using percentage change as the universe of discourse. Change, 1971(3.89), 464-467. doi: 10.5281/zenodo.1069993.

STURGES, H. A., 1926. The choice of a class interval. Journal of the american statistical association, 21(153), 65-66. doi: 10.1080/01621459.1926.10502161.

SUDARSHAN, V. K., BRABRAND, M., RANGE, T. M., & WIIL, U. K., 2021. Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study. Computers in Biology and Medicine, 135, 104541. doi: 10.1016/j.compbiomed.2021.104541.

TATINATI, S., WANG, Y., & KHONG, A. W., 2020. Hybrid method based on random convolution nodes for short-term wind speed forecasting. IEEE Transactions on Industrial Informatics, 18(10), 7019-7029. doi: 10.1109/TII.2020.3043451.

WANG, B., LIU, X., CHI, M., & LI, Y., 2023. Bayesian network based probabilistic weighted high-order fuzzy time series forecasting. Expert Systems with Applications, 121430. doi: 10.1016/j.eswa.2023.121430.

ZADEH, L. A., KLIR, G. J., & YUAN, B., 1996. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers (Vol. 6). World scientific. doi: 10.1016/S0019-9958(65)90241-X.

ZHAO, E., DU, P., & SUN, S., 2022. Historical pattern recognition with trajectory similarity for daily tourist arrivals forecasting. Expert Systems with Applications, 203, 117427. doi: 10.1016/j.eswa.2022.117427.

ZHU, C., MA, X., ZHANG, C., DING, W., & ZHAN, J., 2023. Information granules-based long-term forecasting of time series via BPNN under three-way decision framework. Information Sciences, 634, 696-715. doi: 10.1016/j.ins.2023.03.133.

Prediksi Produksi Biofarmaka Menggunakan Model Fuzzy Time Series dengan Pendekatan Percentage Change dan Frequency Based Partition

Dwi Ekasari Harmadji1, Solikhin Solikhin2*, Uky Yudatama3, Agus Purwanto4


Abstrak

Masa depan biofarmasi semakin cerah. Akibat mahalnya harga obat modern, maka permintaan tanaman obat meningkat di dalam dan luar negeri. Hal ini karena biofarmaka banyak digunakan di industri lain, seperti makanan, minuman, dan kosmetik. Konsumen di seluruh dunia termasuk di Indonesia bergerak menuju produk makanan dan kesehatan yang lebih sehat dengan slogan "kembali ke alam". Dengan demikian permintaan tanaman obat sebagai bahan baku industri lainnya juga meningkat. Untuk mengatasi masalah tersebut diperlukan suatu prediksi untuk menentukan besaran kenaikan atau penurunan jumlah produksi komoditas strategis biofarmaka untuk beberapa tahun ke depan, sehingga Memungkinkan analisis pergerakan tren dari perkembangan data sebelumnya. Saat ini belum dijumpai studi peramalan deret waktu untuk memprediksi produksi biofarmaka dengan tingkat akurasi baik. Dalam eksperimen ini kami mengusulkan model peramalan fuzzy time series berdasarkan pendekatan percentage change sebagai himpunan semesta dan frequency-based partition yang dapat memberikan tingkat akurasi peramalan yang tinggi. Prediksi difokuskan pada biofarmaka untuk empat jenis rimpang yaitu Jahe, Lengkuas, Kencur, dan Kunyit yang dinilai menjadi prioritas utama pengembangan tanaman obat di Indonesia. Dalam penelitian ini menggunakan data sekunder yang diperoleh dari Badan Pusat Statistika tahun 1997-2020. Tujuan dari survei adalah untuk memprediksi dan menganalisa perkembangan produksi biofarmaka untuk empat jenis rimpang. Hasil prediksi menunjukan akurasi luar biasa dengan nilai Mean Absolute Percentage Error yang sangat kecil yakni Jahe 0,03%, Lengkuas 0,02%, Kencur 0,14%, dan Kunyit 0,03%. Dengan demikian hasil eksperimen ini dapat berkontribusi dan digunakan bagi pihak yang berkompeten untuk membantu dalam menentukan kebijakan strategis di masa depan.

Abstract

Biopharmaceuticals' future is brightening. Due to the exorbitant cost of modern treatment, the desire for medicinal herbs is growing. due to their widespread use in different industries such as food, beverages, and cosmetics. Consumers worldwide, especially in Indonesia, are gravitating towards healthier food and health goods. So the demand for medicinal plants as raw materials increases. To solve this issue, a forecast is required for the next few years on the increase or decline in production of strategic biopharmaca commodities. Currently, no reliable time series forecasting study exists for biopharmaca production. To achieve high predicting accuracy, we present a fuzzy time series forecasting model based on percentage change as a universal set and frequency-based partition. Ginger, GalangalKencur, and turmeric are predicted to be the most important rhizomes for biopharmaca research in Indonesia. Secondary statistics from the Central Statistics Agency for 1997–2020 This study's goal was to anticipate and analyze biopharmaca synthesis in four rhizomes. The prediction results are incredibly accurate, with Mean Absolute Percentage Error values of just 0.03%, 0.02%, 0.14%, and 0.03% for Ginger, Galangal, Kencur, and Turmeric, respectively. Thus, competent parties can use the outcomes of this experiment to help determine future strategic policies.

DOI : https://doi.org/10.25126/jtiik.20231016267

Full text : PDF

Referensi

GARG, B., BEG, M. S., & ANSARI, A. Q., 2012. August. A new computational fuzzy time series model to forecast number of outpatient visits. In 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS) (pp. 1-6). IEEE. doi: 10.1109/NAFIPS.2012.6290977.

Direktorat Jenderal Hortikultura Kementerian Pertanian (Dirjen Hortikultura Kementan), 2021. Sejarah. [online] Tersedia di:<https://hortikultura.pertanian.go.id/?page_id=5905> [Diakses 18 Februari 2022]

Program Studi Doktor Ilmu Pertanian Universitas Medan Area (Doktor Pertanian UMA), 2020. Pertanian Hortikultura Dunia. [online] Tersedia di:<https://doktor.pertanian.uma.ac.id/2020/09/07/pertanian-hortikultura-dunia/> [Diakses 18 Februari 2022]

Fakultas Ilmu Pertanian Universitas Medan Area (Pertanian UMA), 2020. Tanaman Hortikultura. [online] Tersedia di:<https://pertanian.uma.ac.id/tanaman-hortikultura/> [Diakses 19 Februari 2022]

Trop BRC (Tropical Biopharmaca Research Center), 2013. Quality of Herbal Medicine Plants and Traditional Medicine. [online] Tersedia di:<http://biofarmaka.ipb.ac.id/brc-news/brc-article/587-quality-of-herbal-medicine-plants-and-traditional-medicine-2013> [Diakses 19 Februari 2022]

SALIM, Z., & MUNADI, E., 2017. Info Komoditi Tanaman Obat. Badan Pengkajian dan Pengembangan Perdagangan Kementerian Perdagangan Republik Indonesia.

Badan Penelitian dan Pengembangan Pertanian (Litbang Pertanian) Departemen Pertanian, 2007. Prospek dan Arah Pengembangan Agribisnis Tanaman Obat. Edisi Kedua. Jakarta Barat, Pusat Penelitian dan Pengembangan Perkebunan. [online] Tersedia di:<https://www.litbang.pertanian.go.id/special/publikasi/doc_perkebunan/tanamanobat/tan-obat-bagian-a.pdf> [Diakses 19 Februari 2022]

LOGAN, T. M., MCLEOD, S., & GUIKEMA, S., 2016. Predictive models in horticulture: A case study with Royal Gala apples. Scientia Horticulturae, 209, pp.201-213, doi: 10.1016/j.scienta.2016.06.033.

IVANOV, D., TSIPOULANIDIS, A., & SCHÖNBERGER, J., 2019. Digital supply chain, smart operations and industry 4.0. In Global Supply Chain and Operations Management (pp. 481-526). Springer, Cham, doi: 10.1007/978-3-319-94313-8_16.

CHRISTYAWAN, T. Y., SYAUQI HARIS, M., RODY, R., & MAHMUDY, W., 2018. Optimization of Fuzzy Time Series Interval Length Using Modified Genetic Algorithm for Forecasting. International Conference on Sustainable Information Engineering and Technology (SIET), pp. 60-65, doi: 10.1109/SIET.2018.8693219.

KUMAR, S., & GANGWAR, S. S., 2016. Intuitionistic Fuzzy Time Series: An Approach for Handling Nondeterminism in Time Series Forecasting. in IEEE Transactions on Fuzzy Systems, vol. 24, no. 6, pp. 1270-1281, Dec. 2016, doi: 10.1109/TFUZZ.2015.2507582.

TELEZHKIN, V., RAGOZIN, A., & SAIDOV, B., 2021. Prediction of Signals in Control Systems Based on Fuzzy Time Series.

International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 950-954, doi: 10.1109/ICIEAM51226.2021.9446390.

SONG, Q., & CHISSOM, B. S., 1993. Forecasting enrollments with fuzzy time series—Part I. Fuzzy sets and systems, 54(1), pp.1-9, doi: 10.1016/0165-0114(93)90355-L.

JIANG, P., YANG, H., LI, R., & LI, C., 2020. Inbound tourism demand forecasting framework based on fuzzy time series and advanced optimization algorithm. Applied Soft Computing, 92, p.106320, doi: 10.1016/j.asoc.2020.106320.

SUN, S., WEI, Y., TSUI, K. L., & WANG, S., 2019. Forecasting tourist arrivals with machine learning and internet search index. Tourism Management, 70, pp.1-10 doi: 10.1016/j.tourman.2018.07.010.

YOLCU, O. C., & ALPASLAN, F., 2018. Prediction of TAIEX based on hybrid fuzzy time series model with single optimization process. Applied Soft Computing, 66, pp.18-33, doi: 10.1016/j.asoc.2018.02.007.

E SILVA, P. C. D. L., JUNIOR, C. A. S., ALVES, M. A., SILVA, R., COHEN, M. W., & GUIMARÃES, F. G., 2020. Forecasting in non-stationary environments with fuzzy time series. Applied Soft Computing, 97, p.106825, doi: 10.1016/j.asoc.2020.106825.

TANUWIJAYA, B. et al., 2020. A Novel Single Valued Neutrosophic Hesitant Fuzzy Time Series Model: Applications in Indonesian and Argentinian Stock Index Forecasting. in IEEE Access, vol. 8, pp. 60126-60141, doi: 10.1109/ACCESS.2020.2982825.

SOLIKHIN, S., LUTFI, S., PURNOMO, P., & HARDIWINOTO, H., 2021. Prediction of passenger train using fuzzy time series and percentage change methods. Bulletin of Electrical Engineering and Informatics, 10(6), pp.3007-3018, doi: 10.11591/eei.v10i6.2822.

SOLIKHIN, S., LUTFI, S., PURNOMO, P., & HARDIWINOTO, H., 2022. A machine learning approach in Python is used to forecast the number of train passengers using a fuzzy time series model. Bulletin of Electrical Engineering and Informatics, 11(5), doi: 10.11591/eei.v11i5.3518.

SOLIKHIN, S., & YUDATAMA, U., 2019. Fuzzy Time Series dan Algoritme Average Based Length untuk Prediksi Pekerja Migran Indonesia. Jurnal Teknologi Informasi dan Ilmu Komputer, 6(4), pp.369-376, doi: 10.25126/jtiik.2019641177.

CHENG, C. H., CHENG, G. W., & WANG, J. W., 2008. Multi-attribute fuzzy time series method based on fuzzy clustering. Expert systems with applications, 34(2), pp.1235-1242, doi: 10.1016/j.eswa.2006.12.013.

SINGH, S. R., 2009. A computational method of forecasting based on high-order fuzzy time series. Expert Systems with Applications, 36(7), pp.10551-10559, doi: 10.1016/j.eswa.2009.02.061.

BURNEY, S. M. A., & ALI, S. M., 2019. Sales Forecasting for Supply Chain Demand Management - A Novel Fuzzy Time Series Approach. 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), pp. 1-4, doi: 10.1109/MACS48846.2019.9024810.

RUBIO, A., BERMÚDEZ, J. D., & VERCHER, E., 2017. Improving stock index forecasts by using a new weighted fuzzy-trend time series method. Expert Systems with Applications, 76, pp.12-20, doi: 10.1016/j.eswa.2017.01.049.

SINGH, P., 2017. An efficient method for forecasting using fuzzy time series. In Emerging research on applied fuzzy sets and intuitionistic fuzzy matrices (pp. 287-304). IGI Global, doi: 10.4018/978-1-5225-0914-1.ch013.

CHEN, S. M., & PHUONG, B. D. H., 2017. Fuzzy time series forecasting based on optimal partitions of intervals and optimal weighting vectors. Knowledge-Based Systems, 118, pp.204-216, doi: 10.1016/j.knosys.2016.11.019.

DEL CAMPO, R. G., GARMENDIA, L., RECASENS, J., & MONTERO, J., 2017, July. Hesitant fuzzy sets and relations using lists. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE, doi: 10.1109/FUZZ-IEEE.2017.8015516.

CHENG, S. H., CHEN, S. M., & JIAN, W. S., 2015, October. A novel fuzzy time series forecasting method based on fuzzy logical relationships and similarity measures. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 2250-2254). IEEE, doi: 10.1109/SMC.2015.393.

CHENG, S. H., CHEN, S. M., & JIAN, W. S., 2016. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Information Sciences, 327, pp.272-287, doi: 10.1016/j.ins.2015.08.024.

CHEN, S. M., & CHEN, S. W., 2014. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. IEEE Transactions on Cybernetics, 45(3), pp.391-403, doi: 10.1109/TCYB.2014.2326888.

LIU, G., XIAO, F., LIN, C. T., & CAO, Z., 2020. A fuzzy interval time-series energy and financial forecasting model using network-based multiple time-frequency spaces and the induced-ordered weighted averaging aggregation operation. IEEE Transactions on Fuzzy Systems, 28(11), 2677-2690, doi: 10.1109/TFUZZ.2020.2972823.

JILANI, T. A., BURNEY, S. M. A., & ARDIL, C., 2010. Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning. International Journal of Computer and Information Engineering, 4(7), pp.1194-1199, doi: 10.5281/zenodo.1077541.

Badan Pusat Statistik (BPS), 2022. Produksi Tanaman Biofarmaka (Obat). [online] Tersedia di:<https://www.bps.go.id/indicator/55/63/1/produksi-tanaman-biofarmaka-obat-.html> [Diakses 18 Februari 2022]

CHANG, P.C., WANG, Y.W. and LIU, C.H., 2007. The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), pp.86-96, doi: 10.1016/j.eswa.2005.11.021.

Fuzzy Time Series dan Algoritme Average Based Length untuk Prediksi Pekerja Migran Indonesia

Solikhin Solikhin1*, Uky Yudatama2


Abstrak

Perkembangan jumlah Pekerja Migran Indonesia (PMI) program Government to Government (G to G) Jepang bidang perawat (nurse) dan perawat orang berusia lanjut (care worker) mengalami naik turun dari tahun 2008 hingga 2018. Untuk dapat menganalisis jumlah PMI yang mengalami naik turun dengan mengukur perkembangan jumlah PMI saat ini dan memprediksikan kondisi tersebut pada masa mendatang, maka diperlukan model prediksi. Dalam penelitian ini diterapkan model fuzzy time series dengan menggunakan algoritme average-based length. Penentuan panjang interval yang efektif dapat mempengaruhi hasil prediksi yaitu dapat meningkatkan keakuratan yang tinggi dalam fuzzy time series. Hasil proses prediksi PMI program G to G Jepang tahun 2019 bidang nurse diperoleh 43.3, bidang care worker diperoleh 300 dan bidang keseluruhan diperoleh 325. Hasil uji kinerja prediksi PMI program G to G Jepang, menggunakan Mean Absolute Percentage Error (MAPE) adalah 24.27% untuk bidang nurse dengan nilai akurasi prediksi 20–50% termasuk dalam kriteria “wajar”, bidang care worker 11.29% dengan nilai akurasi prediksi 10–20% termasuk dalam kriteria “baik”, sedangkan untuk bidang keseluruhan diperoleh 8.41% dengan nilai akurasi prediksi MAPE <10% termasuk dalam kriteria “sangat baik”. Berdasarkan hasil prediksi tersebut dapat digunakan sebagai pendukung keputusan bagi manajemen dalam membuat kebijakan terkait persiapan, perencanaan, penjadwalan, penempatan, dan perlindungan terhadap para calon PMI pada masa mendatang. Dengan demikian dapat meningkatkan kualitas kinerja sumberdaya manusia dalam memberikan pelayanan terbaik terhadap para calon PMI program G to G Jepang.

Abstract

The development of the number of Pekerja Migran Indonesia (PMI) Government to Government programs (G to G) in Japan in the field of nurses  and care workers experienced ups and downs from 2008 to 2018. To be able to analyze the number of PMIs experiencing ups and downs by measuring the development of the current number of PMIs and predicting these conditions in the future, a prediction model is needed. In this study fuzzy time series models are applied using an average-based length algorithm. Determining the length of an effective interval can influence the results of predictions, which can increase high accuracy in fuzzy time series. The results of the PMI program G to G Japan prediction process for 2019 in the nurse field were obtained 43.3, the care worker field was obtained 300 and the overall field was 325. The results of the G to G Japan PMI prediction performance test, using the Mean Absolute Percentage Error (MAPE) were 24.27% for nurse field with predictive accuracy value of 20–50% included in the criteria of "reasonable", the field of care worker 11.29% with a prediction accuracy value of 10-20% included in the criteria "good", while for the overall field obtained 8.41% with MAPE prediction accuracy value < 10% is included in the criteria of "very good". Based on the results of these predictions it can be used as a decision support for management in making policies related to preparation, planning, scheduling, placement, and protection of future PMI candidates. Thus it can improve the quality of the performance of human resources in providing the best service to prospective G-G Japan PMI programs.

DOI: https://doi.org/10.25126/jtiik.2019641177

Full text : PDF

Referensi

ALADAG, C. H., YOLCU, U., EGRIOGLU, E., DALAR, A. Z., 2012. A new time invariant fuzzy time series forecasting method based on particle swarm optimization. Applied Soft Computing, Vol.12, pp.3291–3299.

ANGGODO, Y.P., MAHMUDY, W.F., 2016. Peramalan Butuhan Hidup Minimum Menggunakan Automatic Clustering dan Fuzzy Logical Relationship. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Vol.3, No.2, pp.94-102.

BISHT, K., KUMAR, S., 2016. Fuzzy time series forecasting method based on hesitant fuzzy sets. Expert Systems with Applications, Vol.64, pp.557-568.

CHANG, P.-C., WANG, Y.-W., LIU, C.-H., 2007. The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, Vol.32, pp.86–96.

HEIZER, J., RENDER, B., 2009. Manajemen Operasi. Buku 1 Edisi 9, Jakarta: Salemba Empat.

HUARNG, K.-H., YU, T.H.-K., 2012. Modeling fuzzy time series with multiple observations. Iternational Journal of Innovative Computing, Information and Control, Vol.8, pp.7415-7426.

LU, W., CHEN, X., PEDRYCZ, W., LIU, X., YANG, J., 2015. Using interval information granules to improve forecasting in fuzzy time series. International Journal of Approximate Reasoning, Vo.57, pp.1–18.

NUGROHO, N.A., PURQON, A., 2015. Analisis 9 Saham Sektor Industri di Indonesia Menggunakan Metode SVR. Seminar Kontribusi Fisika, Bandung.

SINGH, P., BORAH, B., 2013. An efficient time series forecasting model based on fuzzy time series. Engineering Applications of Artificial Intelligence, Vol.26, pp.2443–2457.

WANG, L., LIU, X., PEDRYCZ, W., 2013. Effective intervals determined by information granules to improve forecasting in fuzzy time series. Expert Systems with Applications, Vol.40, pp.5673-5679, issue 14.

XIHAO, S., YIMIN, L., 2008. Average-based fuzzy time series models for forecasting Shanghai compound index. World Journal of Modelling and Simulation, Vol.4, No.2, pp.104-111.

Undang-undang Republik Indonesia nomor 18 tahun 2017 tentang Perlindungan Pekerja Migran Indonesia. Jakarta: Kementerian Hukum dan Hak Asasi Manusia Republik Indonesia.

bnp2tki.go.id, 2018.

Retrived from

http://www.bnp2tki.go.id/read/13327/Minat-PMI-Program-G-to-G-ke-Jepang-dan-Korea-Selatan-Semakin-Tinggi-

Data Penempatan dan Perlindungan PMI.

Retrived from

http://www.bnp2tki.go.id/uploads/data/data_05-10-2018_025400_Laporan_Pengolahan_Data_BNP2TKI_2018_-_SEPTEMBER.pdf

 
 
 
 
Copyright © Koleksi Informasi